Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: electrical membrane properties and response characteristics to subthalamic stimulation.
نویسندگان
چکیده
The electrical membrane properties of substantia nigra pars reticulata (SNR) neurons and their postsynaptic responses to stimulation of the subthalamic nucleus (STH) were studied in an in vitro slice preparation. SNR neurons were divided into two types based on their electrical membrane properties. Type-I neurons possessed (1) spontaneous repetitive firings, (2) short-duration action potentials, (3) less prominent spike accommodations, and (4) a strong delayed rectification during membrane depolarization. Type-II neurons had (1) no spontaneous firings, (2) long-duration action potentials, (3) a prominent spike accommodation, (4) a relatively large post-active hyperpolarization, and (5) a less prominent delayed rectification. These membrane properties were very similar to those observed in substantia nigra pars compacta (SNC) neurons in slice preparations. Features common to both types of neurons include that (1) the input resistance was similar, (2) they showed an anomalous rectification during strong hyperpolarizations, and (3) they were capable of generating Ca potentials. Intracellular responses of both types of SNR neurons to STH stimulation consisted of initial short-duration monosynaptic excitatory postsynaptic potentials (EPSPs) and a short-duration inhibitory postsynaptic potential (IPSP) followed by a long-duration depolarization. The IPSP was markedly suppressed by application of bicuculline methiodide and the polarity was reversed by intracellular injection of Cl-. In the preparations obtained from internal capsule-transected rats, STH-induced EPSPs had much longer durations than those observed in the normal preparations, while the amplitude of IPSPs and succeeding small-amplitude long-duration depolarizations was small. The results indicated that SNR contains two electrophysiologically different types of neurons, and that both types of neurons receive monosynaptic EPSPs from STH and IPSPs from areas rostral to STH.
منابع مشابه
Subthalamic stimulation-induced synaptic responses in substantia nigra pars compacta dopaminergic neurons in vitro.
The subthalamic nucleus (STN) is one of the principal sources of excitatory glutamatergic input to dopaminergic neurons of the substantia nigra, yet stimulation of the STN produces both excitatory and inhibitory effects on nigral dopaminergic neurons recorded extracellularly in vivo. The present experiments were designed to determine the sources of the excitatory and inhibitory effects. Synapti...
متن کاملNigral stimulation for resistant axial motor impairment in Parkinson’s disease? A randomized controlled trial
Gait and balance disturbances typically emerge in advanced Parkinson's disease with generally limited response to dopaminergic medication and subthalamic nucleus deep brain stimulation. Therefore, advanced programming with interleaved pulses was put forward to introduce concomittant nigral stimulation on caudal contacts of a subthalamic lead. Here, we hypothesized that the combined stimulation ...
متن کاملSubthalamic stimulation and neuronal activity in the substantia nigra in Parkinson's disease.
High-frequency stimulation of the subthalamic nucleus (STN) is an effective treatment for severe forms of Parkinson's disease (PD). To study the effects of high-frequency STN stimulation on one of the main output pathways of the basal ganglia, single-unit recordings of the neuronal activity of the substantia nigra pars reticulata (SNr) were performed before, during, and after the application of...
متن کاملSubthalamic Nucleus High-Frequency Stimulation Restores Altered Electrophysiological Properties of Cortical Neurons in Parkinsonian Rat
Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramid...
متن کاملMetabotropic glutamate receptor mRNA expression in the basal ganglia of the rat.
Metabotropic glutamate receptors (mGluRs) couple the actions of glutamate to intracellular second messenger systems through G-proteins. The mGluRs play an important role in the regulation of basal ganglia function. Ligand binding studies have revealed that the basal ganglia contain at least two pharmacological types of metabotropic binding sites. Agonists of mGluRs can affect both in vitro elec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research
دوره 437 1 شماره
صفحات -
تاریخ انتشار 1987